Expression in Human Breast Cancer Cells Omega-3 Polyunsaturated Fatty Acids Regulate Syndecan-1
نویسندگان
چکیده
Human epidemiologic studies and animal model studies support a role for n-3 polyunsaturated fatty acids (n-3 PUFA) in prevention or inhibition of breast cancer. However, mechanisms for this protection remain unclear. Syndecan-1 is a heparan sulfate proteoglycan, expressed on the surface of mammary epithelial cells and known to regulate many biological processes, including cytoskeletal organization, growth factor signaling, and cell-cell adhesion. We studied effects of n-3 PUFA on syndecan-1 expression in human mammary cell lines. PUFA were delivered to cells by lowdensity lipoproteins (LDL) isolated from the plasma of monkeys fed diets enriched in fish oil (n-3 PUFA) or linoleic acid (n-6 PUFA). Proteoglycan synthesis was measured by incorporation of [S]-sodium sulfate. No effect of either LDL was observed in nontumorigenic MCF-10A cells, whereas in MCF-7 breast cancer cells, treatment with n-3–enriched LDL but not n-6–enriched LDL resulted in significantly greater synthesis of a proteoglycan identified by immunoprecipitation as syndecan-1. Using real-time reverse transcription-PCR (RT-PCR), it was shown that n-3–enriched LDL significantly increased the expression of syndecan-1 mRNA in a dosedependent manner and maximal effective time at 8 hours of treatment. The effect was mimicked by an agonist for peroxisome proliferator-activated receptor ; (PPAR;) and eliminated by the presence of PPAR; antagonist suggesting a role for PPAR; in syndecan enhancement. Our studies show that n-3 LDL modifies the production of syndecan-1 in human breast cancer cells and suggest that biological processes regulated by syndecan-1 may be modified through LDL delivery of n-3 PUFA. (Cancer Res 2005; 65(10): 4442-7)
منابع مشابه
Omega-3 polyunsaturated fatty acids regulate syndecan-1 expression in human breast cancer cells.
Human epidemiologic studies and animal model studies support a role for n-3 polyunsaturated fatty acids (n-3 PUFA) in prevention or inhibition of breast cancer. However, mechanisms for this protection remain unclear. Syndecan-1 is a heparan sulfate proteoglycan, expressed on the surface of mammary epithelial cells and known to regulate many biological processes, including cytoskeletal organizat...
متن کاملIn vivo and in vitro regulation of syndecan 1 in prostate cells by n-3 polyunsaturated fatty acids.
Syndecan 1 is the major proteoglycan produced by epithelial cells. It is strategically localized at the plasma membrane to participate in growth factor signaling and cell-cell and cell-matrix interactions. Its expression may modulate the properties of epithelial lineage tumor cells in which it is generally down-regulated compared with nontumor progenitors. The present study examined the regulat...
متن کاملOmega-3 Fatty Acids and PPARγ in Cancer
Omega-3 (or n-3) polyunsaturated fatty acids (PUFAs) and their metabolites are natural ligands for peroxisome proliferator receptor activator (PPAR)gamma and, due to the effects of PPARgamma on cell proliferation, survival, and differentiation, are potential anticancer agents. Dietary intake of omega-3 PUFAs has been associated with a reduced risk of certain cancers in human populations and in ...
متن کاملThe effect of omega- 3 polyunsaturated fatty acids on endothelial tight junction occludin expression in rat aorta during lipopolysaccharide-induced inflammation
Objective(s): Occludin is essential for proper assembly of tight junctions (TJs) which regulate paracellular endothelial permeability. Omega-3 polyunsaturated fatty acids (Ω-3 PUFA) protect endothelial barrier function against injury. Materials and Methods: We examined anti-inflammatory effect of Ω-3 PUFA intake (30 mg/kg/day for 10 days) on expression and location of occludin in the aorta of ...
متن کاملInduction of mammary differentiation by mammary-derived growth inhibitor-related gene that interacts with an omega-3 fatty acid on growth inhibition of breast cancer cells.
We previously identified and characterized a novel tumor growth inhibitor and a fatty acid-binding protein in human mammary gland and named it the mammary-derived growth inhibitor-related gene (MRG). Here, the effects of MRG on mammary gland differentiation and its interaction with omega-3 polyunsaturated fatty acids (omega-3 PUFAs) on growth inhibition were investigated. MRG protein expression...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005